Upper hemi-continuity

- Best-response correspondences have to be upper hemi-continuous for Kakutani's fixed-point theorem to work
- Upper hemi-continuity requires that:
- The correspondence have a closed graph (the graph does contain its bounds), i.e.
$f: A \rightarrow Y$ has a closed graph if for any two sequences $x^{m} \rightarrow x \in A$ and $y^{m} \rightarrow y$, with $x^{m} \in A$ and $y^{m} \in f\left(x^{m}\right)$ for every m, we have $y \in f(x)$
- The images of compact sets are bounded i.e.
if for every compact set $B \subset A$ the set $f(B)$ is bounded
- The first condition is enough whenever the range of correspondence is compact, which is the case with Nash Theorem

Normal-Form Games:
 Applications

- So far we've analyzed trivial games with a small number of strategies
- We will now apply IEDS and NE concepts to Normal-Form Games with infinitely many strategies
- Divide a Benjamin
- Second-price auction
- First-price auction
- Price-setting duopoly (Bertrand model)

Divide a Benjamin

- Two players select a real number between 0 and 100
- If the two numbers add up to 100 or less, each player gets the payoff = the selected number
- If the two numbers add up to more than 100, each player gets nothing
- Task: Secretly select a number, your opponent will be selected randomly.
- Analysis: The set of NE in this game is infinite (all pairs of numbers which sum up to exactly 100). Only one strategy (0) is weakly dominated.
- Yet people can predict quite well how this game will be played in reality

Second-Price Auction

- There is one object for sale
- There are 9 players, with valuations of an object equal to their index $\left(\mathrm{v}_{\mathrm{i}}=\mathrm{i}\right)$
- Players submit bids b_{i}
- The player who submits the highest bid is the winner (if tied, the higher-index player is the winner)
- The winner pays the price equal to the second-highest bid $\left(b_{s}\right)$, so his payoff is $v_{i}-b_{s}$
- All other players receive 0 payoffs
- Analysis: Notice that bidding anything else than own true valuation is weakly dominated
- Yet, there are some strange NE, e.g. one in which the winner is the player with the lowest valuation $\left(b_{1}=10\right.$, $\mathrm{b}_{2}=\mathrm{b}_{3}=. .=\mathrm{b}_{9}=0$)

First-Price Auction

■ Same as above, except...

- The winner pays the price equal to her own bid, so her payoff is $v_{i}-b_{i}$
- Analysis: Notice that bidding above or at own valuation is weakly dominated
- In all NE the highest-valuation player (9) wins and gets a payoff between 0 and 1

Price-setting duopoly

- In the model introduced by Bertrand (1883), two sellers (players) choose and post prices simultaneously
- The consumers (not players) automatically buy from the lower-price seller, according to the demand curve
- If prices are the same, the demand is split 50-50 between the sellers
- Let us consider a version with

■ costs equal to 0
■ demand curve: $Q=80-10 * P$
$\square S_{1}=S_{2}=\{0,1,2,3,4\}$

Discrete version

Try solving by IEDS and find NE

		Price of firm $2\left(P_{2}\right)$					
Price of firm $\left(\mathbf{P}_{\mathbf{1}}\right)$	$\mathbf{4}$	$\mathbf{8 0}, 80$	$\mathbf{0}, 150$	$\mathbf{0}, 120$	$\mathbf{0}, 70$	$\mathbf{0}, 0$	

Continuous version

- Let us consider a more general version

■ marginal costs equal to $c<1 / 4$
\square (inverse) demand curve: $P=1-Q$
$\square S_{1}=S_{2}=[0,+\infty)$

- We will now specify payoff functions, state and graph best response correspondences

Best-response correspondences

- The profit (payoff) of firm i is:
- $\Pi_{\mathrm{i}}=\left(\mathrm{p}_{\mathrm{i}}-\mathrm{c}\right) \mathrm{q}_{\mathrm{i}}$
- $q_{i}=0$
if $p_{i}>p_{j}$
- $q_{i}=1-p_{i}$
if $p_{i}<p_{j}$
- $q_{i}=\left(1-p_{i}\right) / 2$ if $p_{i}=p_{j}$
- And the best response is:
- $p_{i}=p^{M} \quad$ if $p_{j}>p^{M}$ (monopoly price),
- $p_{i}=p_{j}-\varepsilon \quad$ if $c<p_{j} \leq p^{M}$
- $p_{i} \geq c$
if $p_{j}=c$
$-p_{i}>p_{j}$
if $p_{j}<c$

Robustness

- NE $=\{\mathrm{c}, \mathrm{c}\}-$ is this a paradox?
- When costs differ, we have a monopoly
- But the best response always the same: undercut the opponent, unless it would mean selling below cost
- BR different if there are capacity constraints
- Lowest-price guarantees - change the best response, undercutting no longer optimal

