Upper hemi-continuity

- Best-response correspondences have to be upper hemi-continuous for Kakutani's fixed-point theorem to work
- Upper hemi-continuity requires that:
 - The correspondence have a closed graph (the graph does contain its bounds), i.e.
 - *f*: $A \rightarrow Y$ has a closed graph if for any two sequences $x^m \rightarrow x \in A$ and $y^m \rightarrow y$, with $x^m \in A$ and $y^m \in f(x^m)$ for every *m*, we have $y \in f(x)$
 - The images of compact sets are bounded i.e.

if for every compact set $B \subset A$ the set f(B) is bounded

The first condition is enough whenever the range of correspondence is compact, which is the case with Nash Theorem

Normal-Form Games: Applications

- So far we've analyzed trivial games with a small number of strategies
- We will now apply IEDS and NE concepts to Normal-Form Games with infinitely many strategies
 - Divide a Benjamin
 - Second-price auction
 - First-price auction
 - Price-setting duopoly (Bertrand model)

Divide a Benjamin

- Two players select a real number between 0 and 100
- If the two numbers add up to 100 or less, each player gets the payoff = the selected number
- If the two numbers add up to more than 100, each player gets nothing
- Task: Secretly select a number, your opponent will be selected randomly.
- Analysis: The set of NE in this game is infinite (all pairs of numbers which sum up to exactly 100). Only one strategy (0) is weakly dominated.
- Yet people can predict quite well how this game will be played in reality

Second-Price Auction

- There is one object for sale
- There are 9 players, with valuations of an object equal to their index (v_i = i)
- Players submit bids b_i
- The player who submits the highest bid is the winner (if tied, the higher-index player is the winner)
- The winner pays the price equal to the second-highest bid (b_s), so his payoff is v_i – b_s
- All other players receive 0 payoffs
- Analysis: Notice that bidding anything else than own true valuation is weakly dominated
- Yet, there are some strange NE, e.g. one in which the winner is the player with the lowest valuation (b₁=10, b₂=b₃=..=b₉=0)

First-Price Auction

- Same as above, except...
- The winner pays the price equal to her own bid, so her payoff is v_i – b_i
- Analysis: Notice that bidding above or at own valuation is weakly dominated
- In all NE the highest-valuation player (9) wins and gets a payoff between 0 and 1

Price-setting duopoly

- In the model introduced by Bertrand (1883), two sellers (players) choose and post prices simultaneously
- The consumers (not players) automatically buy from the lower-price seller, according to the demand curve
- If prices are the same, the demand is split 50-50 between the sellers
- Let us consider a version with
 - costs equal to 0
 - demand curve: $Q = 80 10^*P$

$$\bullet S_1 = S_2 = \{0, 1, 2, 3, 4\}$$

Discrete version Try solving by IEDS and find NE

		Price of firm 2 (P_2)				
D .		4	3	2	1	0
Price of firm 1 (P ₁)	4	80 , 80	0 , <i>150</i>	0 , <i>120</i>	0 , 70	0 , <i>0</i>
	3	150 , <i>0</i>	75 , 75	0 , <i>120</i>	0 , 70	0 , <i>0</i>
	2	120 , <i>0</i>	120 , <i>0</i>	60 , <i>60</i>	0 , 70	0 , <i>0</i>
	1	70 , <i>0</i>	70 , <i>0</i>	70 , <i>0</i>	35 , <i>35</i>	0 , <i>0</i>
	0	0 , <i>0</i>	0 , <i>0</i>	0 , <i>0</i>	0 , <i>0</i>	0 , <i>0</i>

Continuous version

- Let us consider a more general version
 marginal costs equal to *c* < 1/4
 (inverse) demand curve: *P* = 1 − Q
 S₁ = S₂ = [0, +∞)
 We will now specify payoff functions, state
 - and graph best response correspondences

Best-response correspondences

The profit (payoff) of firm i is: $\blacksquare \Pi_i = (p_i - c)q_i$ ■ q_i = 0 $if p_i > p_i$ $q_i = 1 - p_i$ if $p_i < p_i$ $q_i = (1 - p_i)/2$ if $p_i = p_i$ And the best response is: ■ p_i = p^M if $p_i > p^M$ (monopoly price), if c $< p_i \le p^M$ $\mathbf{p}_i = \mathbf{p}_i - \varepsilon$ if p_i = c $\square p_i \ge c$ if p_i < c $\square p_i > p_i$

Robustness

- NE = {c,c} is this a paradox?
- When costs differ, we have a monopoly
- But the best response always the same: undercut the opponent, unless it would mean selling below cost
- BR different if there are capacity constraints
- Lowest-price guarantees change the best response, undercutting no longer optimal